Amine Functionalized Kit-6 Mesoporous Magnetite Nanocomposite as an Efficient Adsorbent for Removal of Ponceau 4R Dye from Aqueous Solutions

Authors

  • Mohadeseh Sojoudi Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
Abstract:

In this study, amine functionalized Kit-6 silica mesoporous magnetite nanocomposite (NH2-MMNC) was synthesized by chemical methods and used as an efficient and recoverable adsorbent for removal of Ponceau 4R, as a toxic dye, from aqueous solutions. The synthesized nanocomposites were characterized by XRD, FT-IR, BET and SEM instruments. The effect of various experimental parameters on the dye removal efficiency was studied using Taguchi orthogonal array design (L9 array) method and under optimum conditions (pH = 2, adsorbent amount = 80 mg, stirring time = 30 min and without addition of salt) removal efficiency higher than 98% was obtained.The kinetic studies showed rapid sorption dynamics by a second-order kinetic model with R2=0.9993 and qeq= 58.8 mg g-1, suggesting chemisorption mechanism. Dye adsorption equilibrium data were fitted well to the Langmuir isotherm and the synthesized sorbent showed complete removal efficiency. The maximum monolayer capacity of the sorbent (Qmax , mg g-1), and the Langmuir binding constant which is related to the energy of adsorption (KL, L mg-1), were obtained as 87.7 and 0.407, respectively. The results of real samples show that the synthesized nanocomposite can be used as a recyclable and efficient adsorbent for removal of Ponceau 4R anionic dye from aqueous solutions.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

amine functionalized kit-6 mesoporous magnetite nanocomposite as an efficient adsorbent for removal of ponceau 4r dye from aqueous solutions

in this study, amine functionalized kit-6 silica mesoporous magnetite nanocomposite (nh2-mmnc) was synthesized by chemical methods and used as an efficient and recoverable adsorbent for removal of ponceau 4r, as a toxic dye, from aqueous solutions. the synthesized nanocomposites were characterized by xrd, ft-ir, bet and sem instruments. the effect of various experimental parameters on the dye r...

full text

Application of Magnetic Nano Adsorbent Fe2O3 for Removal of Hazardous Ponceau-S Dye from Aqueous Solution

The photodegradation of Ponceau-S dye was investigated using UV radiation in presence of nanosized Fe2 O3 .Removal efficiency of Ponceau-S was sensitive to the operational parameters such as dye concentration, catalyst dose, pH, contact time, TOC and COD. The photocatalytic treatment of red colored Ponceau-S dye by magnetic nano semiconductor (Fe2 O3 )is an effective, economic and faster mode. ...

full text

Graphene oxide–magnetite nanocomposite as an efficient and magnetically separable adsorbent for methylene blue removal from aqueous solution

We report a facile method to produce a magnetically separable graphene oxide–magnetite nanocomposite (GO–Fe3O4) and its adsorption performance in methylene blue (MB) removal from aqueous solution. The GO–Fe3O4 nanocomposite was synthesized by a solution-phase self-assembly method including the incorporation of monodisperse Fe3O4 nanoparticles (NPs) and GO in a dimethylformamide/chloroform mixtu...

full text

The Perlite-calcium Alginate-activated Carbon Composite as an Efficient Adsorbent for the Removal of Dyes from Aqueous Solutions

To remove dyes from wastewater, the perlite-calcium alginate–activated carbon (PCA) composite was prepared by a simple method. This composite was characterized by FTIR, XRD, SEM, and BET techniques. A high capacity of PCA was observed for the adsorption of some dyes such as methylene blue (MB) and methyl orange (MO) from aqueous solutions (1111 and 909 mg g-1). The best results were achieved at...

full text

Removal of Selenium from Aqueous Solutions Using Magnetite Nanoparticles as Adsorbent

Selenium (Se) is a problematic contaminant for many regions worldwide. Adsorption is by far the most researched and most promising method in treating Se laden waters. The major limitations in using those adsorbents are the preferential adsorption for either selenite (SeO3) or selenate (SeO4) and interferences by anions such as phosphates. The objective of this study was to remove Se from aqueou...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 2

pages  287- 298

publication date 2016-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023